Optimal Control of a Class of Linear Hybrid Systems with Saturation
نویسنده
چکیده
We consider a class of first order linear hybrid systems with saturation. A system that belongs to this class can operate in several modes or phases; in each phase each state variable of the system exhibits a linear growth until a specified upper or lower saturation level is reached, and after that the state variable stays at that saturation level until the end of the phase. A typical example of such a system is a traffic signal controlled intersection. We develop methods to determine optimal switching time sequences for first order linear hybrid systems with saturation that minimize criteria such as average queue length, worst case queue length, average waiting time, and so on. First we show how the Extended Linear Complementarity Problem (ELCP), which is a mathematical programming problem, can be used to describe the set of system trajectories of a first order linear hybrid systems with saturation. Optimization over the solution set of the ELCP then yields an optimal switching time sequence. Although this method yields globally optimal switching time sequences, it is not feasible in practice due to its computational complexity. Therefore, we also present some methods to compute suboptimal switching time sequences. Furthermore, we show that if there is no upper saturation then for some objective functions the globally optimal switching time sequence can be computed very efficiently. We also discuss some approximations that lead to suboptimal switching time sequences that can be computed very efficiently. Finally, we use these results to design optimal switching time sequences for traffic signal controlled intersections.
منابع مشابه
A hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملNew Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کاملDesigning a novel structure of explicit model predictive control with application in a buck converter system
This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 39 شماره
صفحات -
تاریخ انتشار 2000